Pathways for Neoarchean pyrite formation constrained by mass-independent sulfur isotopes.
نویسندگان
چکیده
It is generally thought that the sulfate reduction metabolism is ancient and would have been established well before the Neoarchean. It is puzzling, therefore, that the sulfur isotope record of the Neoarchean is characterized by a signal of atmospheric mass-independent chemistry rather than a strong overprint by sulfate reducers. Here, we present a study of the four sulfur isotopes obtained using secondary ion MS that seeks to reconcile a number of features seen in the Neoarchean sulfur isotope record. We suggest that Neoarchean ocean basins had two coexisting, significantly sized sulfur pools and that the pathways forming pyrite precursors played an important role in establishing how the isotopic characteristics of each of these pools was transferred to the sedimentary rock record. One of these pools is suggested to be a soluble (sulfate) pool, and the other pool (atmospherically derived elemental sulfur) is suggested to be largely insoluble and unreactive until it reacts with hydrogen sulfide. We suggest that the relative contributions of these pools to the formation of pyrite depend on both the accumulation of the insoluble pool and the rate of sulfide production in the pyrite-forming environments. We also suggest that the existence of a significant nonsulfate pool of reactive sulfur has masked isotopic evidence for the widespread activity of sulfate reducers in the rock record.
منابع مشابه
Neoarchean carbonate-associated sulfate records positive Δ³³S anomalies.
Mass-independent fractionation of sulfur isotopes (reported as Δ(33)S) recorded in Archean sedimentary rocks helps to constrain the composition of Earth's early atmosphere and the timing of the rise of oxygen ~2.4 billion years ago. Although current hypotheses predict uniformly negative Δ(33)S for Archean seawater sulfate, this remains untested through the vast majority of Archean time. We appl...
متن کاملSedimentary sulfur isotopes and Neoarchean ocean oxygenation
Abrupt disappearance of mass-independent fractionation of sulfur isotopes (MIF-S) from the geologic record and an apparent ingrowth in seawater sulfate around 2.45 billion years ago (Ga) signal the first large-scale oxygenation of the atmosphere [the Great Oxygenation Event (GOE)]. Pre-GOE O2 production is evident from multiple other terrestrial and marine proxies, but oceanic O2 concentrations...
متن کاملSulfur biogeochemistry and isotopic fractionation in shallow groundwater and sediments of Owens Dry Lake, California
Groundwater and sediment samples (~1 m depth) at sites representative of different groundwater pathways were collected to determine the aqueous speciation of sulfur and the fractionation of sulfur isotopes in aqueous and solid phases. In addition, selected sediment samples at 5 depths (from oxic to anoxic layers) were collected to investigate the processes controlling sulfur biogeochemistry in ...
متن کاملModeling atmospheric O2 over Phanerozoic time
A carbon and sulfur isotope mass balance model has been constructed for calculating the variation of atmospheric O2 over Phanerozoic time. In order to obtain realistic O2 levels, rapid sediment recycling and O2-dependent isotope fractionation have been employed by the modelling. The dependence of isotope fractionation on O2 is based, for carbon, on the results of laboratory photosynthesis exper...
متن کاملRapid oxygenation of Earth’s atmosphere 2.33 billion years ago
Molecular oxygen (O2) is, and has been, a primary driver of biological evolution and shapes the contemporary landscape of Earth's biogeochemical cycles. Although "whiffs" of oxygen have been documented in the Archean atmosphere, substantial O2 did not accumulate irreversibly until the Early Paleoproterozoic, during what has been termed the Great Oxygenation Event (GOE). The timing of the GOE an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 44 شماره
صفحات -
تاریخ انتشار 2013